
CSCI473/573 Human-Centered Robotics
Project 3: Robot Understanding of Human Behaviors

Using Skeleton-Based Representations

Project Assigned: April 8
Multiple due dates (all materials must be submitted to Canvas)
Deliverable 1 (Representation Code) due: April 17, 23:59:59

Deliverable 2 (Complete Code) due: April 24, 23:59:59
Deliverable 3 (Project Report) due: April 29, 23:59:59

In this project, students will implement several skeleton-
based representations (Deliverable 1) and use Support Vector
Machines (SVMs) (Deliverable 2) to classify human behav-
iors using a public activity dataset collected from a Kinect V1
sensor. Additionally, students are required to write a report
following the format of standard IEEE robotics conferences
using LATEXin Deliverable 3.

Students are required to program this project using C++ or
Python in Ubuntu 18.04 LTS, but students are NOT required
to implement the project in ROS.

Before you start this project, you need to understand the
related content in lecture slides of Chapter 09: “09-Skeleton-
based Representations” (for Deliverable 1) and Chapter 10
“10-Robot Learning from Data” (for Deliverable 2), as well
as the corresponding lecture videos on the course website.

I. DATASET

The MSR Daily Activity 3D dataset1 will be used in this
projet, which was one of the most widely applied benchmark
dataset in human behavior understanding tasks. This dataset
contains 16 human activities, as demonstrated in Figure 2,
performed by 10 human subjects. Each subject performs each
activity twice, once in a standing position, and the other in
a sitting position. Although this dataset contains both color-
depth and skeleton data, in this project, we will only explore
the skeletal information to construct skeleton-based human
representations (Deliverable 1).

The skeleton in each frame contains 20 joints, as illustrated
by Figure 1. The correspondence between joint names and
joint indices is also presented in the figure. For example,
Joint #1 is HipCenter and Joint #18 is KeeRight, etc.

In this project, a pre-formatted skeleton data will be used,
which can be downloaded in the course website.
http://inside.mines.edu/˜hzhang/Courses/
CSCI473-573/assignment.html.

This dataset in this project is a subset of original dataset,
which only contains six (6) activity categories:

This write-up is prepared using LATEX.
1The MSR Daily Activity 3D dataset is removed from the author’s website

and no longer publicly available after 2017.

(a) Names (b) Indices

Fig. 1: Skeleton joint names and indices from Kinect SDK.

• CheerUp (a08)
• TossPaper (a10)
• LieOnSofa (a12)
• Walk (a13)
• StandUp (a15)
• SitDown (a16)

It is also noteworthy that this dataset is not formatted to the
LIBSVM format but much easier to process then the original
data format. Conversion of the data to the SVM format will
be part of Deliverable 2.

In particular, the dataset contains two folders: Train and
Test. Data instances in the directory Train is used for
training (and validation). Data instances in Test is used
for testing the performance. Each instance has a filename
like: a12 s08 e02 skeleton proj.txt. This filename
means the data instance belongs to activity category 12 (i.e.,
a12, that is “lie down on sofa” as in Figure 2), from human
subject 8 (s08) at his/her second trial (i.e., e02). The dataset
contains 16 activity categories, 10 subjects, and 2 trials each
subject. Instances from subjects 1–6 are used for training (in
the directory Train), and instances from subjects 7–10 are
used for testing (Test).

When you open a data instance file, e.g., a12 s08 e02 -

http://inside.mines.edu/~hzhang/Courses/CSCI473-573/assignment.html
http://inside.mines.edu/~hzhang/Courses/CSCI473-573/assignment.html


skeleton proj.txt, you will see the following:
1 1 0.326 -0.101 2.111
1 2 0.325 -0.058 2.152
1 3 0.319 0.194 2.166
.
.
.

Each row contains five values, representing:
1) frame id,
2) joint id,
3) joint position x,
4) joint position y,
5) joint position z.

Each frame contains 20 rows that contain information of all
joints in the frame.

II. CSCI 473: DELIVERABLE 1 (REPRESENTATION
CONSTRUCTION)

Students in CSCI 473 must implement two skeleton-based
representations during the Deliverable 1.

A. Relative Distances and Angles of Star Skeleton

Students in CSCI 473 are required to implement the human
representation based on the Relative Angles and Distances
(RAD) of star skeleton, as described by Algorithm 1. The
objective is to implement the RAD representation to convert
all data instances in the folder Train into a single training
file rad d1, each line corresponding the RAD representation
of a data instance. Similarly, all instances in the folder Test
needs to be converted into a single testing file rad d1.t.

B. Customized Representations

Implement a customized skeleton-based representation by
choosing different joints other than the joints selected in the
star skeleton. For example, you can change reference joints,
select other joints other than body extremities, or compute
distances of all joints but ignore the orientation information.
Your code is required to output a single training file cust -
d1 for all training instances, with each row containing the
customized representation of an instance, and a single testing
file cust d1.t, similar to the task in Section VI-A.

C. What to Submit

For Deliverable 1, CSCI 473 students are required to
submit a single tarball named D1 firstname lastname.tar (or
.tar.gz) to the portal named “P3-D1” in Canvas, which must
contain the following items:

• A README that provides sufficient instructions needed
to compile and execute your code. Your README also
needs to document your implementation information,
including which joints are used in the RAD representa-
tion, how the histograms are computed, and how many
bins are used.

• Your code to construct the RAD and customized repre-
sentations.

• The generated representation data, including rad d1,
rad d1.t, cust d1, and cust d1.t.

Algorithm 1: RAD representation using star skeletons
Input : Training set Train or testing set Test
Output : rad d1 or rad d1.t

1: for each instance in Train or Test do
2: for frame t = 1, ..., T do
3: Select joints that form a star skeleton (Figure 3);
4: Compute and store distances between body

extremities to body center (dt1, ..., dt5);
5: Compute and store angles between two adjacent body

extremities (θt1, ..., θt5);
6: end
7: Compute a histogram of N bins for each di = {dti}Tt=1,

i = 1, ..., 5;
8: Compute a histogram of M bins for each θi = {θti}Tt=1,

i = 1, ..., 5;
9: Normalize the histograms by dividing T to compensate

for different number of frames in a data instance;
10: Concatenate all normalized histograms into a

one-dimensional vector of length 5(M +N);
11: Convert the feature vector as a single line in the rad d1

or rad d1.t file.
12: end
13: return rad d1 or rad d1.t

Fig. 3: Illustration of human representation based on relative
distance and angles of star skeleton

Students are allowed to include a local copy of the training
and testing sets within the code directory to make your code
self-contained.

III. CSCI 573: DELIVERABLE 1 (REPRESENTATION
CONSTRUCTION)

CSCI 573 students are required to implement three specific
skeleton-based representations for Deliverable 1, including
RAD, HJPD, and HOD.

A. Relative Distances and Angles of Star Skeleton

Students in CSCI 573 are required to implement the human
representation based on the Relative Angles and Distances
(RAD) of star skeleton, as described by Algorithm 1. The
objective is to implement the RAD representation to convert
all data instances in the folder Train into a single training
file rad d1, each line corresponding the RAD representation



Fig. 2: The full MSR Daily Activity 3D dataset contains sixteen human activities: (1) drink, (2) eat, (3) read book, (4) call
cellphone, (5) write on a paper, (6) use laptop, (7) use vacuum cleaner, (8) cheer up, (9) sit still, (10) toss paper, (11) play
game, (12) lie down on sofa, (13) walk, (14) play guitar, (15) stand up, (16) sit down.

of a data instance. Similarly, all instances in the folder Test
needs to be converted into a single testing file rad d1.t.
This required representation is the same as Section VI-A.

B. Histogram of Joint Position Differences (HJPD)

Given the 3D location of a joint (x, y, z) and a reference
joint (xc, yc, zc) in the world coordinate, the joint displace-
ment is defined as:

(∆x,∆y,∆z) = (x, y, z)− (xc, yc, zc) (1)

The reference joint can be the skeleton centroid or a fixed
joint. For each temporal sequence of human skeletons (in a
data instance), a histogram is computed for the displacement
along each dimension, i.e., ∆x,∆y,∆z. Then, the computed
histograms are concatenated into a single vector as a feature.

This HJPD representation is similar to the RAD represen-
tation, except that it uses all joints and ignores the pairwise
angles. Refer to Section 3.3 of reference [1] for more details,
which is available online at:
http://staffhome.ecm.uwa.edu.au/

˜00053650/papers/hossein_WACV2014.pdf.
Your code is required to generate a single training file

hjpd d1 for all training instances, with each row containing
the HJPD representation of an instance, and a single testing
file hjpd d1.t.

C. Histogram of Oriented Displacements (HOD)

You need to implement the skeleton-based representation
of Histogram of Oriented Displacements (HOD), as intro-
duced in Section 3 of reference [2], including the Temporal
Pyramid. The paper is available online at:
http://www.aaai.org/ocs/index.php/

IJCAI/IJCAI13/paper/view/6967.
Your code is required to generate a single training file

hod d1 for all training instances, with each row containing

the HOD representation of an instance, and a single testing
file hod d1.t.

D. What to Submit

For Deliverable 1, students in CSCI 573 are required to
submit a single tarball, named D1 firstname lastname.tar
(or .tar.gz) to the Canvas portal named “P3-D1”, which must
contain the following items:

• A README that provides sufficient instructions needed
to compile and execute your code. Your README also
needs to document your implementation information,
for example, including which joints are used in the RAD
representation, and how the histograms are computed
and how many bins are used in your HJPD and HOD
representations.

• All your code to construct the RAD, HJPD, and HOD
representations.

• All the generated skeleton-based representation data, in-
cluding rad d1, rad d1.t, hjpd d1, hjpd d1.t,
hod d1, and hod d1.t.

Students are allowed to include a local copy of the training
and testing sets within the code directory to make your code-
self contained.

IV. SUPPORT VECTOR MACHINES
(PART OF DELIVERABLE 2)

The second deliverable of this project (in Deliverable 2) is
to understand and apply Support Vector Machines (SVM) to
enable robot learning in practical applications (i.e., behavior
understanding in our project).

We will apply LIBSVM as our learning algorithm, which
is an excellent open source implementation of SVMs devel-
oped by Chang and Lin [3]. The LIBSVM library provides
software support for a variety of SVMs, with the source code

http://staffhome.ecm.uwa.edu.au/~00053650/papers/hossein_WACV2014.pdf
http://staffhome.ecm.uwa.edu.au/~00053650/papers/hossein_WACV2014.pdf
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6967
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6967


available in C++, which also provides an interface to Python
and many other programming languages and environments.
Here’s the link to the LIBSVM webpage:
http://www.csie.ntu.edu.tw/˜cjlin/

libsvm.
Before working on Deliverable 2, you will need to install

LIBSVM, get familiar with this library, and understand how
to convert the output data files from your Deliverable 1 to the
format required by LIBSVM, as described in the following
subsections.

A. Installing LIBSVM

First, follow the instructions on the LIBSVM website for
downloading the software. The most recent release is Version
3.24 (Sept 11, 2019). Note that the README file within the
package provides helpful information for using the LIBSVM
package. In addition, you are required to read through and
make sure to have a good understanding of the Practical
Guide provided by the authors:
http://www.csie.ntu.edu.tw/˜cjlin/

papers/guide/guide.pdf.

B. Getting Familiar with LIBSVM

You are required to follow the examples in Appendix A of
the Practical Guide to get familiar with how to use LIBSVM.
The exemplary datasets (e.g., svmguide1) are available online
from the LIBSVM directory, already formatted into the form
expected by LIBSVM, here:
http://www.csie.ntu.edu.tw/˜cjlin/

libsvmtools/datasets/.

C. Input Data Format Required by LIBSVM

Now, given the histograms, e.g., the skeleton-based repre-
sentations such as rad d1 or rad d1.t you have computed
in Deliverable 1, you will need to convert them into data files
with the a format that can be used by LIBSVM: rad d2 and
rad d2.t for training and testing respectively. Specifically,
this format of data file now becomes:
<label> <index1>:<value1> <index2>:<value2> ...
.
.
.
Each line contains an instance and is ended by the ‘\n’

character. For classification (as in this project), <label> is an
integer indicating the class label (multi-class is supported).
Indices must be in ASCENDING order. Labels in the testing
instances are only used for evaluation to calculate accuracy
or errors.

Note that the histograms you computed in Deliverable 1
must be converted to this new data format for the LIBSVM
software to process. After obtaining a single data file rad d2
from training data and a single file rad d2.t from testing
instances (both of which follow the LIBSVM format), you
need to use LIBSVM to learn a C-SVM model with the radial
basis function (RBF) kernel (see the Practical Guide) from
the training data rad d2. Then, you need to use the learned
model to make predictions of the testing data in rad d2.t.

The predicted class label will be automatically generated by
LIBSVM with a name rad d2.t.predict. Please refer
to the examples in the Practical Guide. Then, you will need
to evaluate the performance (e.g., accuracy and confusion
matrix) of your robot learning method in Deliverable 2,
combined with the skeleton-based representations you built
in Deliverable 1.

V. CSCI 473: DELIVERABLE 2
(ROBOT LEARNING FROM DATA)

A. Tasks to Perform

Students in CSCI 473 need to perform the following tasks
to complete Deliverable 2, including:

1) Read and understand Section IV as well as the Practical
Guide of LIBSVM (the theory and practical usage of
LIBSVM have been discussed in the class). Go through
the examples provided by the Practical Guide.

2) Convert the training and testing files (i.e., the outputs
of your code to build the representations in Deliverable
1 to a format that can be used by LIBSVM. Name them
as rad d2, rad d2.t, cust d2, and cust d2.t

3) Apply LIBSVM to learn a C-SVM model with the RBF
kernel from the training data, and use the learned mod-
el to predict behavior labels of the testing data, which
will generate a result file, e.g., rad d2.t.predict,
and cust d2.t.predict.

4) Use LIBSVM APIs (e.g., C++ member functions) in
your implementation, but NOT the train and test bina-
ries (executables) compiled in the LIBSVM library.

5) Evaluate its performance based upon the output results
using the performance metrics of accuracy and confu-
sion matrix. Your implementation’s accuracy based on
each representation must be better than 50%.

B. What to Submit

For the Deliverable 2, CSCI 473 students are required to
submit a single tarball named D2 firstname lastname.tar (or
.tar.gz) to the portal named “P3-D2” in Canvas, which must
contain the following items:

• The graphs of the grid search (from grid.py) obtained
in the experiments for both representations (i.e., RAD
and the customized representation);

• What are the “best” values of C and γ of your C-SVMs
for both representations, which need to be written in the
README;

• All the converted representation files and output predic-
tion result files;

• Any code you write in Deliverable 2 and the README
(with the same requirement as in Deliverable 1).

VI. CSCI 573: DELIVERABLE 2
(ROBOT LEARNING FROM DATA)

A. Tasks to Perform

Students in CSCI 573 need to perform the following tasks
to finish Deliverable 2, including:

1) Read and understand Section IV as well as the Practical
Guide of LIBSVM (the theory and practical usage of

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


LIBSVM have been discussed in the class). Go through
the examples in the Practical Guide, and understand
how to integrate LIBSVM APIs into your source code.

2) Convert the training and testing files (i.e., the outputs
of your code to build the representations in Deliverable
1 to a format that can be used by LIBSVM. This must
be done for all three representations (i.e., RAD, HJPD,
and HOD).

3) Apply LIBSVM to learn a C-SVM model with the RBF
kernel from the training data, and use the learned mod-
el to predict behavior labels of the testing data, which
will generate a result file for all the representations.

4) Write an integrated program that reads data from
the training and testing directories, creates a given
representation (specified by a command-line flag), per-
forms robot learning, and outputs the information of
accuracy and confusion matrix to the screen. Your
implementation must be based on the LIBSVM APIs
(e.g., C++ member functions), and should NOT use
the train and test binaries (executables) compiled in
the LIBSVM library. Your implementation’s accuracy
based on each representation must be better than 60%.

5) Analyze how the accuracy varies according to different
numbers of bins.

B. What to Submit

For the Deliverable 2, CSCI 573 students are required to
submit a single tarball named D2 firstname lastname.tar (or
.tar.gz) to the portal named “P3-D2” in Canvas, which must
contain the following items:

• The graphs of the grid search (from grid.py) obtained in
the experiments for all the representations (i.e., RAD,
HJPD, and HOD);

• What are the “best” values of C and γ of your C-SVMs
for all the representations, which can be written in the
README;

• All the converted representation files and output predic-
tion result files;

• A figure showing how accuracy varies according to the
number of bins;

• The code you write in Deliverable 2 and the README
(with the same requirement as in Deliverable 1).

VII. CSCI 473: DELIVERABLE 3
(PROJECT REPORT)

As the last deliverable of the project, you must prepare a
single 2-3 page document (in pdf format, using LATEX and
the 2-column IEEE style for robotics conferences, which is
similar to this project write-up). You can use the LATEX tem-
plate ieeeconf.zip at: http://ras.papercept.
net/conferences/support/tex.php.

A LaTex tutorial is posted on the assignment web page,
which can also be directly viewed or downloaded from:
http://inside.mines.edu/˜hzhang/Courses/
CSCI473-573/Projects/LatexTutorial.pdf

Your report should discuss the design details (of both your
representations and the SVM models) and the experimental

results (including the accuracy and confusion matrix). The
documentation you turn in must be in pdf format in a single
file generated using LATEX. Name your paper D3 firstname -
lastname.pdf and submit it to the Canvas portal named “P3-
D3”.

VIII. CSCI 573: DELIVERABLE 3
(PROJECT PAPER)

As the last deliverable of the project, you must prepare a
single 4-6 page project report (in pdf format, using LATEX and
the 2-column IEEE style for robotics conferences, which is
similar to this project write-up). You can use the LATEX tem-
plate ieeeconf.zip at: http://ras.papercept.
net/conferences/support/tex.php.

A LaTex tutorial is posted on the assignment web page,
which can also be directly viewed or downloaded from:
http://inside.mines.edu/˜hzhang/Courses/
CSCI473-573/Projects/LatexTutorial.pdf

Your project paper should includes the following:
• An abstract containing 200 to 300 words to summarize

your findings.
• A brief introduction describing the skeleton-based rep-

resentations and SVM models, as well as your imple-
mentations.

• A detailed description of your experiments, with enough
information that would enable someone to recreate your
experiments.

• An explanation of the results. Include all the experimen-
tal details and results. Use figures, graphs, and tables
where appropriate. Your results should make it clear that
the software has in fact worked. Accuracy and confusion
matrix must be presented and discussed. In particular,
the accuracy of your approach must be better than 50%.
The graphs showing the changes of accuracy according
to different numbers of bins must also be included and
discussed.

• A discussion of the significance of the results.
The reader of your paper must be able to understand what

you have done and what your software does without looking
at the code itself.

The project paper you turn in must be in pdf format in a
single file. Name your paper D3 firstname lastname.pdf and
submit it to the Canvas portal named “P3-D3”.

IX. GRADING

The total score of this project is 10 points. Your grade will
be based on the quality of your project implementation and
the documentation of your findings in the report.

• 30%: The quality of Deliverable 1. You should have a
“working” software implementation, which means that
your skeleton-based representations are implemented in
software, your code runs without crashing, and performs
the behavior understanding task.

• 45%: The quality of Deliverable 2 (with almost the same
requirements to the Deliverable 1).

• 25%: The quality of Deliverable 3, that is – the project
report prepared in LATEX using IEEE robotics conference

http://ras.papercept.net/conferences/support/tex.php
http://ras.papercept.net/conferences/support/tex.php
http://inside.mines.edu/~hzhang/Courses/CSCI473-573/Projects/LatexTutorial.pdf
http://inside.mines.edu/~hzhang/Courses/CSCI473-573/Projects/LatexTutorial.pdf
http://ras.papercept.net/conferences/support/tex.php
http://ras.papercept.net/conferences/support/tex.php
http://inside.mines.edu/~hzhang/Courses/CSCI473-573/Projects/LatexTutorial.pdf
http://inside.mines.edu/~hzhang/Courses/CSCI473-573/Projects/LatexTutorial.pdf


styling and submitted in the pdf format – Figures and
graphs should be clear and readable, with axes labeled
and captions that describe what each figure or graph
illustrates. The content should include all the experi-
mental results and discussions mentioned previously in
this document.

Students in CSCI573 will be graded more strictly on the
quality of the code implementation and paper presentation.
The instructor expects a more through analysis of the ex-
perimental results, and a good implementation of skeleton-
based representations and robot learning methods for human
behavior understanding. The paper should have the “look and
feel” of a technical conference paper, with logical flow, good
grammar, sound arguments, illustrative figures, etc.

REFERENCES

[1] H. Rahmani, A. Mahmood, D. Q. Huynh, and A. Mian, “Real time
action recognition using histograms of depth gradients and random de-
cision forests,” in IEEE Winter Conference on Applications of Computer
Vision (WACV), 2014.

[2] M. A. Gowayyed, M. Torki, M. E. Hussein, and M. El-Saban, “His-
togram of oriented displacements (hod): Describing trajectories of
human joints for action recognition.,” in International Joint Conference
on Artificial Intelligence (IJCAI), 2013.

[3] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 2, no. 3, p. 27, 2011.


