CSCI-473/573 Human-Centered Robotics
Project 2: Reinforcement Learning for Robot Wall Following

Project Assigned: March 2, 2020
Multiple due dates (all materials must be submitted to Canvas)
Deliverable 1 (Problem Formulation) due: March 11, 23:59:59
Deliverable 2 (Reinforcement Learning) due: April 1, 23:59:59 (extended from March 20)
Deliverable 3 (Project Report) due: April 7, 23:59:59 (extended from April 1)

In this project, students will design and implement re-
inforcement learning algorithms to teach an autonomous
mobile robot to follow a wall and avoid running into obsta-
cles. Students will be using the Gazebo simulation in ROS
Melodic to simulate an omni-directional mobile robot named
Triton, and using an environment map that is provided to you.
Students will be using a laser range scanner on the robot to
perform sensing and learning, where the robot is controlled
using steering and velocity commands. Students are required
to program this project using C++ or Python in ROS Melodic
running on Ubuntu 18.04 LTS (i.e., the same development
environment used in Project 1). Also, students are required to
write a report following the format of standard IEEE robotics
conferences using IXTEX.

A note on collaboration: Students are highly encouraged
to discuss this project amongst yourselves for the purposes of
helping each other understand the simulation, how to control
the robot, how to read sensor values, etc. This collaboration
is solely for the purposes of helping each other get the
simulation up and running. You may also discuss high-level
concepts in helping each other understand the reinforcement
learning algorithms. However, each person must individually
make their own decisions specific to the learning aspects of
this project. In particular, this means that individuals must
make their own decisions over the representations of states,
actions, and rewards to be designed in this project, and must
implement their own learning algorithms and prepare all the
written materials to be turned in on their own.

I. THE WALL FOLLOWING PROBLEM

Wall following is a common strategy used for navigating
an environment. This capability allows an autonomous robot
to navigate through open areas until it encounters a wall, and
then to navigate along the wall with a constant distance. The
successful wall follower should traverse all circumferences
of its environment at least one time without getting either too
close, or too far from walls, or running into obstacles. Many
methods were applied to this problem, such as control-rule

If you have any questions or comments, please contact the instructor
Prof. Hao Zhang at hzhang@mines.edu, and the TA Qingzhao Zhu
at zhugingzhao@mymail.mines.edu.

This write-up is prepared using I&TEX.

Fig. 1: The Triton robot and its simulation in Gazebo.

based methods and genetic programming. In this project, stu-
dents are required to solve the problem using reinforcement
learning.

In this project, we use the following informal definitions:
following a wall means that at time ¢, the moving robot is at
a desired distance d,, from the wall, and that this distance
is maintained at time ¢ + 1. During wall following, the robot
must be moving. A robot that maintains a distance d,, from
the wall at time ¢ and ¢ + 1, but is not moving, does not fit
the definition of following a wall. For this project, students
will define the value of d,, (e.g., 0.75m). For the purposes
of this project, we will consider a robot that covers longer
distances while following a wall to be better than a robot
that only follows a wall very slowly (Note that we didn’t
just say we prefer a robot that covers longer distances; The
robot should only be rewarded if it covers longer distances
while also following the wall). Note also that the robot can
follow a wall from either side (right or left), except that once
it is following a wall on one side (say, the right), it should
continue to follow the wall on that side until the wall is lost.
If you prefer, you may restrict the definition to be only right-
side wall following or only left-side wall following (meaning
that the robot only follows walls on one side, and never on
another), if this makes your robot learn faster or better. All
these issues may affect your reward function.

File Edit Camera View Window Help

World | Insert [% QW[-~ - ALIILIA

GUI

Scene
Spherical C...
Physics
Atmosphere

Property Va
name are
is_static ™1
self_collide mF
enable_... ®WF

» pose
» link

Il i Steps:1- Real Time Factol Sim Time: Real Time: Iterations: 3 Reset Time

Fig. 2: Gazebo simulation of the Triton robot and the experiment environment for wall following.

https://gitlab.com/HCRLab/stingray-robotics/Stingray-Simulation
https://gitlab.com/HCRLab/stingray-robotics/Stingray-Simulation
http://docs.ros.org/melodic/api/sensor_msgs/html/msg/LaserScan.html
http://docs.ros.org/melodic/api/sensor_msgs/html/msg/LaserScan.html
http://gazebosim.org/tutorials/?tut=ros_comm#Tutorial:ROSCommunication
http://gazebosim.org/tutorials/?tut=ros_comm#Tutorial:ROSCommunication

design possibilities and find the one that you believe works
best.

Based upon the descritized states and actions, students are
required to implement a Q-table and manually set the values
of the Q-table to determine the policy. The manually selected
Q-values will be applied for two purposes:

o Allowing the robot to follow a straight wall using these
manually defined Q-table as the policy.

o Using these manually defined Q-values to encode expert
knowledge to facilitate Q-learning in Deliverable 2.

In Deliverable 1, students are required to demonstrate that
the manually defined Q-values as the policy enable the robot
to follow a straight wall. Accordingly, the ROS package you
submit in Deliverable 1 should allow a user (e.g., the TA or
instructor) to test the policy manually defined in the Q-table
for a robot to follow a straight wall in Gazebo. This means
that (1) your submitted ROS package in Deliverable 1 should
include your manually defined Q-table, and (2) a launch file
designed to start the whole simulation to show the capability
of robot following a straight wall in Gazebo.

A. CSCI-473: What to Submit for Deliverable 1

CSCI-473 students are required to submit a single tarball,
named DI _firstname_lastname.tar (or .tar.gz) to the Canvas
portal named P2-D1, which must contain the following two
items:

o Your ROS package (that must include the source files,
launch files, package.xml, CMakeLists.txt, world files,
README, etc.) to demonstrate the robot capability of
following a straight wall. The launch file must auto-
matically start your demonstration in Gazebo (as shown
in Fig.). The README file must provide sufficient
information of your package, and clearly describe how
to use the launch file to run the demonstration.

e A short demo video showing that the robot successfully
follows a straight wall (no need to implement or show
the capability of turning around wall corners; following
a straight wall is sufficient for this deliverable). You
can either submit a video or provide a link to the video
on YouTube. If you are submitting a video, make sure
the video size is less than SM. You can use ffinpeg to
speed up the video in Ubuntu. If you choose to provide
a link, you are responsible to ensure that the video link
allows public access.

B. CSCI-573: What to Submit for Deliverable 1

CSCI-573 students are required to submit a single tarball,
named D] _firstname_lastname.tar (or .tar.gz) to the Canvas
portal named P2-D1, which must contain the following two
items:

e Your ROS package (that must include the source files,
launch files, package.xml, CMakeLists.txt, world files,
README, etc.) to demonstrate the robot capability of
following a straight wall. The launch file must auto-
matically start your demonstration in Gazebo (as shown
in Fig.). The README file must provide sufficient

information of your package, and clearly describe how
to use the launch file to run the demonstration.

o A short demo video showing that the robot successfully
follows a straight wall (no need to implement or show
the capability of turning around wall corners; following
a straight wall is sufficient for this deliverable). You
can either submit a video or provide a link to the video
on YouTube. If you are submitting a video, make sure
the video size is less than SM. You can use ffinpeg to
speed up the video in Ubuntu. If you choose to provide
a link, you are responsible to ensure that the video link
allows public access.

IV. DELIVERABLE 2: REINFORCEMENT LEARNING

In this deliverable, students will implement reinforcement
learning algorithms. Before starting to code your algorithms,
you need to read the lecture to understand them:
[http://inside.mines.edu/~hzhang |
|Courses/CSCI4/3-573/Lectures |
[06—RobotReinforcementLearning.pdf]

After understanding the lecture, please START EARLY!
It may take a while for the reinforcement learning algorithms
to converge.

In class, we discussed two classic reinforcement learning
algorithms, including Q-learning (Fig. B) and SARSA (Fig.
B). This Deliverable 2 mainly focuses on expanding the ROS
package you already developed in Deliverable 1 and imple-
menting the reinforcement learning algorithms to update the
Q-values through learning (instead of using manually defined
values). In particular, your reinforcement learning algorithms
should satisfy the following requirements:

o Temporal Difference (TD) with a pre-defined learning
rate (i.e., StepSize) must be implemented to update the
Q-values in an incremental and iterative fashion.

o e-greedy policy must be implemented with a pre-defined
€ value to balance exploration and exploitation.

These requirements are already included in the provided Q-
learning and SARSA algorithms. You may use your manually
defined Q-values in Deliverable 1 as the initialization, or set
all Q-values to 0 in order to let the algorithms to learn from
scratch without prior knowledge.

As part of the deliverable, you are responsible for fine-
tuning how you will represent the input state and the motor
actions, and the best level of discretization of these values.
In addition, you will need to decide the reward function
you’ll use for learning; presumably the robot will have a
positive reward for following a wall and a negative reward
for running into a wall. The robot may also have a component
of the reward function that rewards moving longer distances
along a wall, rather than have the robot creep along the wall.
You may also define your reward function any way you like,
including the use of scaled or graduated rewards as a robot
moves toward or away from a wall, if you find such rewards
helpful. Moreover, you can decide yourself where the starting
position of the robot will be for each learning episode. You’ll
need to determine how many episodes are needed for your
program to learn.

http://inside.mines.edu/~hzhang/Courses/CSCI473-573/Lectures/06-RobotReinforcementLearning.pdf
http://inside.mines.edu/~hzhang/Courses/CSCI473-573/Lectures/06-RobotReinforcementLearning.pdf
http://inside.mines.edu/~hzhang/Courses/CSCI473-573/Lectures/06-RobotReinforcementLearning.pdf

Q-learning (off-policy TD control)

Initialize Q(s,a), for all s € 8, a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(s, A/) «— Q(S,A) + Q[R'l‘ ymaxa. Q(S’,a) — Q(S, A)]
5«58

until S is terminal

Fig. 3: The Q-learning algorithm.

Q-Learning
ONLY
(o Demo should show the robot's ability to:

1. Follow straight wall
@ Turn left 90 degree at L shape corner
3.) Turn 180 degree at | shape corner

Turn right 90 degree at L shape corner

@ Turn 180 degree at U shape corner

Fig. 4: The five scenarios in which the robot should be able
to follow the wall using the learned policy.

Sarsa (on-policy TD control)

Initialize Q(s,a), for all s € §,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S
Choose A’ from S’ using policy derived from @Q (e.g., e-greedy)
Q(S,4) < Q(S, A) + a[R+7Q(S', A') — Q(S, 4)]
S« 5 A A,

until S is terminal

Fig. 5: The SARSA algorithm.

V. DELIVERABLE 3: PROJECT REPORT
A. CSCI 473: What to Submit for Deliverable 3

As the last deliverable of the project, you must prepare a
single 2-3 page document (in pdf format, using IKIEX and
the 2-column IEEE style for robotics conferences, which is
similar to this project write-up). You can use the KTEX tem-
plate ieeeconf.zip at: http://ras.papercept.
net/conferences/support/tex.phpl

A LaTex tutorial is posted on the assignment web page,
which can also be directly viewed or downloaded from:
http://inside.mines.edu/~hzhang/Courses/
CSCI473-573/Projects/LatexTutorial.pdf

Your report should discuss the details of your Q-learning
algorithm design, including:

« How the sensing field of view is divided?

« How state, action, and reward are defined?

o How your Q-table is defined and initialized?

o What are the values of model parameters, including e,

a, and ~y used in your Q-learning implementation?

« How many episodes were used in your training to obtain
a good solution? How much time did training take?

o How are the experimental results of robot wall follow-
ing? For example, you may take screenshots from your
demo video to show your Q-learning enables the robot
to address the five scenarios described in Fig. f]

The project report you turn in must be in the pdf format in
a single file generated using ISTEX. Name your paper D3_-
firstname_lastname.pdf and submit it to the Canvas portal
named P2-D3.

B. CSCI 573: What to Submit

As the last deliverable of the project, you must prepare a
single 4-6 page project report (in pdf format, using KTEX and
the 2-column IEEE style for robotics conferences, which is
similar to this project write-up). You can use the KTEX tem-
plate ieeeconf.zip at: http://ras.papercept.
net/conferences/support/tex.phpl

A LaTex tutorial is posted on the assignment web page,
which can also be directly viewed or downloaded from:
http://inside.mines.edu/~hzhang/Courses/
CSCI473-573/Projects/LatexTutorial.pdf

Design: Your report should discuss the details of both Q-
learning and SARSA algorithms that you designed. For each
learning algorithm, you need to discuss:

Sarsa

254
©
—
©
2
& -50-
] Q-learning
L
o
>
g -75-
3
(8]
(8]
<

-100 T T T T 1
0 100 200 300 400 500
Episodes

Fig. 6: An example (and just an example) of quantitative re-
sults, using accumulated reward as the performance measure.
Your results may be noisier and/or take a larger number of
episodes for the learning methods to converge.

o How the sensing field of view is divided?
« How state, action, and reward are defined?
o How your Q-table is defined and initialized?
o What are the values of model parameters, including e,
a, and 7y used in your Q-learning implementation?
Experiment: Your report needs to include the following
experimental results:

 Your report should include experimental results to make
it clear that the robot has in fact learned. Results need to
be quantitative, but not qualitative. This means that you
have some concrete measure (e.g. accumulated reward,
as demonstrated in the example in Fig. [6) by which to
evaluate your results. You may depict the performance
of Q-learning and SARSA based upon your measure in
the same figure to compare both methods.

¢ Your report should include qualitative results (e.g., some
snapshots from your demo video) to show your learning
methods enable robots to address the five situations of
wall following described in Fig.

e Your report should compare Q-learning and SARSA.
For example, how many episodes were used in training
by Q-learning and SARSA to obtain a good solution?
How much time did the training take for each of the
learning methods?

Organization: Your paper should includes the following:

¢ An abstract containing 200 to 300 words to summarize
your findings.

e A brief introduction describing the robot wall following
task, and describing your RL solution at the high-level.

« An approach section that describe your implementations
of Q-learning and SARSA. You may include answers to
the Design questions in this section.

o An explanation of the results. Include all experimental
results required by the above Experiment section. Use
figures, graphs, and tables where appropriate to present
quantitative and qualitative results.

o A conclusion section to discuss the significance of the

http://ras.papercept.net/conferences/support/tex.php
http://ras.papercept.net/conferences/support/tex.php
http://inside.mines.edu/~hzhang/Courses/CSCI473-573/Projects/LatexTutorial.pdf
http://inside.mines.edu/~hzhang/Courses/CSCI473-573/Projects/LatexTutorial.pdf
http://ras.papercept.net/conferences/support/tex.php
http://ras.papercept.net/conferences/support/tex.php
http://inside.mines.edu/~hzhang/Courses/CSCI473-573/Projects/LatexTutorial.pdf
http://inside.mines.edu/~hzhang/Courses/CSCI473-573/Projects/LatexTutorial.pdf

results, any insightful observations, and future work that
you believe would improve the learning.

The reader of your paper must be able to understand what
you have done and what your learning methods do without
looking at the code itself.

The project paper you turn in must be in the pdf format in
a single file generated using ISTEX. Name your paper D3_-
firstname_lastname.pdf and submit it to the Canvas portal
named P2-D3.

VI. GRADING

Your grade will be based upon the quality of your package
implementation, the demo demonstrations, and the documen-
tation of your findings in the report.

e 30%: The quality of Deliverable 1. You should have a
working implementation of the ROS package, meaning
that your code is implemented as a ROS package, your
code runs without crashing in ROS and Gazebo, and
performs robot wall following using manually defined
Q-values. You should also create and submit a video
demo to demonstrate that the robot is able to follow a
straight wall.

e 45%: The quality of the Deliverable 2. You should have
a working implementation of the required reinforcement
learning algorithm(s), meaning that your code of each
required algorithm is implemented as a ROS package,
runs without crashing in ROS and Gazebo, learns Q-
values in the learning mode, and performs robot wall
following in ALL FIVE scenarios using your learned Q-
values in the testing mode. You should also create and
submit a video demo for each of the required algorithms
to demonstrate that the robot is able to follow a wall
in all five scenarios defined in Fig. [using the policy
learned by the algorithm.

e 25%: The quality of your project report. All required
contents must be included in the report. The report must
be prepared in I5TEXusing the IEEE robotics conference
styling and submitted in the pdf format. Figures and
graphs should be clear and readable, with axes labeled
and captions that describe what each figure and graph
illustrates.

For Deliverable 1 and Deliverable 2, CSCI-573 students
will be graded more strictly on the quality of the code (ROS
package) implementation.

For Deliverable 3, CSCI-573 students will be graded more
strictly on the quality of experimental analysis and paper
presentation. As described in Section the instructor
expects a more through analysis of the experimental results
and algorithm design. The paper should have the “look and
feel” of a technical conference paper, with logical flow, good
grammar, sound arguments, and illustrative figures.

REFERENCES
[1] D. L. Moreno, C. V. Regueiro, R. Iglesias, and S. Barro, “Using prior

knowledge to improve reinforcement learning in mobile robotics,” Proc.
Towards Autonomous Robotics Systems, 2004.

